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Abstract

Analytical expressions for optimum power extracted in an MHD generator, with constant channel width, uniform magnetic field and constant
electrical conductivity have been proposed by Neuringer. In this paper, a numerical approach to study optimum power extraction in a MHD
generator for an arbitrary geometry, magnetic field and electrically conductivity has been developed. This is accomplished by coupling a flow
solver to an optimization code. Using this approach, Neuringer’s analysis has been extended to study MHD channels with spatially varying
electrical conductivity. An Euler flow solver coupled to an optimization code is used to predict fluid-dynamical variables, optimum power extracted
and the voltage drop in the external load corresponding to optimum power extraction. Neuringer’s results showed that in an MHD uniform channel
with constant conductivity, most of the power delivered to the external load takes place near the extremities. Using our coupled flow/optimizer
approach, we show that a more uniform axial power density distribution can be obtained with a spatially varying electrical conductivity distribution,
thus making it a useful tool in design/analysis of practical MHD generators.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Interest in designing and optimizing MHD generators in the
sixties came from the possibility of converting the power gener-
ated from controlled nuclear fusion into electrical energy. These
devices are characterized by high efficiencies and can operate
at high temperatures. Several analytical studies [1–12] have in-
vestigated various aspects of design, analyses and optimization
of MHD generators. Ref. [1] through [12] represents only a par-
tial list of the large body of literature pertaining to the study of
MHD generators.

While the interest in MHD-based systems subsided in the
seventies and eighties, there has been renewed interest in the
possible use of MHD for hypersonic flight. The AJAX con-
cept, proposed in Russia in the mid-nineties, requires the use
of a MHD generator, placed between the inlet and combus-
tor (burner) of a hypersonic air-breathing engine [13,14]. The
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MHD generator would extract electrical energy from the flow
kinetic energy of an ionized gas stream at the inlet and thus by-
pass a portion of the intake kinetic energy around the burner.
This scheme allows an active control of the temperature rise as-
sociated with the deceleration of the inlet air flow while being
more effective in decelerating the flow as compared to simple
adiabatic compression processes. The electrical power gener-
ated could be used for powering electrical systems on-board
and also for accelerating the flow stream exiting the combustor.
The MHD by-pass engine thus seems like a strong candidate
for future hypersonic flight applications. Hence, there is a need
to explore various issues with regards to design and optimiza-
tion of the MHD generator, which is the main component of the
MHD by-pass system.

Several constraints/requirements need to be considered for
the design and optimization of the entire MHD by-pass sys-
tem. Optimization studies of the entire MHD-based power gen-
eration system, with its various sub-systems and components
would be a daunting task. Analytical and/or theoretical esti-
mates can play an important role in fixing the limits of operation
of various sub-systems in a MHD by-pass system. Based on
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Nomenclature

B magnetic field
E electric field
J current density
K voltage drop across the load
l channel length
m mass flow rate
Mo inlet Mach number
P̂ total electric power
r resistance/length

u velocity
y channel width
y0 channel width at inlet

Greek symbols

δ interaction parameter
γ ratio of specific heats (=5/3 for all results in this

work)
σ electrical conductivity
these estimates it is possible to limit the range and number of
design variables, thus ensuring the feasibility of using more ad-
vanced design/optimization tools for meeting the engineering
constraints and requirements of the overall system. Refs. [1–3]
investigated the problem of optimizing MHD generators under
various constraints based on simplified assumptions to make
the problem tractable. Analytical expressions were obtained for
the optimum value of the desired cost function (total power ex-
tracted or optimum shape of the duct). While these analytical
expressions provide useful insight into the influence of various
fluid-dynamic and MHD parameters, they are of limited use-
fulness for design/analyses of practical MHD-based systems
wherein the channel geometry (cross-section), electrical con-
ductivity and possibly magnetic field might have a spatially
variation. For instance, the simplified electrical conductivity
models used in Refs. [1–3] are inadequate for MHD gener-
ators proposed for use in aerospace applications, where the
cold incoming gas stream is ionized by non-equilibrium means
[16]. Thus, to study MHD generators with an arbitrary electri-
cal conductivity model or geometry, one has to take recourse
to numerical methods. In this paper we develop a numerical
methodology for coupling an optimization code with a flow
solver, which enables it to address several problems of inter-
est in MHD generator design and optimization.

Electrical conductivity of the flowing gas stream is perhaps
the most important aspect in the design and optimization of
MHD generators. Keeping this in mind, we demonstrate the use
of our numerical scheme to study the problem of optimizing
the power extracted from an ideal segmented Faraday genera-
tor with spatially varying electrical conductivity, by extending
Neuringer’s [1] analysis. We investigate the case of compress-
ible inviscid plasma flow in a channel of fixed length and uni-
form cross-sectional area with a uniform transverse magnetic
field, as discussed in [1]. We have chosen Neuringer’s study
to validate our numerical approach by comparing our results
to analytical solutions derived by Neuringer. Further, we ex-
tend Neuringer’s analyses for compressible flows to include
the effects of variable electrical conductivity since it is rele-
vant to flows in aerospace applications. We demonstrate the use
of a compressible Euler flow solver coupled to an optimiza-
tion code to accomplish this extension of Neuringer’s analyses.
The publicly available optimization code called ADS (Auto-
matic Design Synthesis) [15] is used in our study. This paper
is organized as follows. The formulation of the optimization
problem is discussed in Section 2 along with the simplifying
assumptions. Section 3 describes the numerical method and its
generality to address more complicated analysis of MHD gen-
erators including the effects of space charge, Hall currents and
friction/heat transfer effects.

Results and discussions are presented in Section 4. In this
section, we validate our numerical approach by comparing our
results with analytical solutions obtained by Neuringer [1]. Fur-
ther, we present results for an ideal Faraday generator where a
hypothetical electrical conductivity distribution is maintained
by e-beams. Section 5 discusses the conclusions of this work.

2. Problem statement

Following Ref. [1], we present the simplified analysis of
power extracted in a MHD generator. Fig. 1 shows a simpli-
fied MHD channel with constant cross-section. The magnetic
field B is directed into the plane of the paper. Since the elec-
trical conductivity and magnetic Reynolds number is small for
practical MHD generators, the effect of the generated currents
on the applied magnetic field are ignored and hence the applied
magnetic field is assumed to be constant.

It is assumed that the flow is one-dimensional (no variations
of the fluid-dynamical variables in the y and z directions). For
an ideal segmented Faraday generator, induced currents in the

Fig. 1. Simplified diagram of an MHD generator (ideal segmented Faraday gen-
erator).
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x-direction are small and hence Hall effects are ignored. The
plasma is assumed to be electrically neutral; hence there are
no space-charge sheaths near the walls. Friction and other heat
losses are also ignored. Based on these assumptions it is pos-
sible to use Kirchoff’s voltage law to express a relationship
between the induced electric field (E) and the current density
(J ). If r(x) represents the external unit resistance at a location
‘x’ along the channel, J (x) represents the induced current per
unit length of channel at location ‘x’, σ represents the plasma
conductivity in the channel and y represents the channel width

Ey = J r + Jy

σ
(1)

where E = uB is the induced electric field, J r is the voltage
drop in the external resistance and Jy/σ is the voltage drop due
to the internal resistance of the plasma. If the drop in voltage
across the external resistance is denoted by k, then the above
equation can be rewritten in terms of the current density as fol-
lows

J = σ

y
{uBy − k} (2)

The power generated per unit length of the generator would then
be

P̂

length
= rJ 2 = kJ = kσ

{
uB − k

y

}
(3)

The total power generated in a channel with length l would then
be

P̂ = k

l∫
0

σ

(
uB − k

y

)
dx (4)

The optimization problem seeks to determine the axial velocity
distribution u(x) and the voltage drop in the external resistance
k, in order to maximize P̂ .

Neuringer [1] used the simplified model for current flow de-
scribed above to obtain the optimum power extracted from an
inviscid compressible flow in a MHD channel with constant
cross-section and electrical conductivity, subjected to a uniform
transverse magnetic field. Neuringer showed that the power de-
livered to the external load equals the difference between the
total enthalpy flux between the inlet and exit of the channel.
Hence, for a given inlet enthalpy flux, the power delivered to the
external load is at a maximum, if the enthalpy flux at the chan-
nel exit would be minimum. Using this argument, Neuringer
derived analytical expressions for optimum power generated in
a MHD generator, for a prescribed set of conditions (γ , Mo, yo

and δ). Neuringer also derived analytical expressions for axial
variation of velocity, Mach number and pressure, correspond-
ing to maximum power extraction. Details of this derivation are
explained in Ref. [1].

3. Numerical method

In this section, we discuss a numerical approach to study
the problem of optimum power extraction wherein the cross-
sectional area, electrical conductivity and magnetic field may
be spatially varying (derivation of power generation shown in
Eq. (4) does not require the cross-sectional area, magnetic field
or electrical conductivity to be constant). We demonstrate the
use of this methodology to study the above-mentioned opti-
mization problem. In our numerical approach, a compressible
Euler flow solver is coupled to an optimization code, to eval-
uate the optimum value of extracted power given in Eq. (4).
The terminal voltage of the generator (k), is the design variable
and power generation the objective function in the optimiza-
tion routine. For a given initial flow field, terminal voltage (k),
spatial distribution of electrical conductivity, and/or magnetic
field, a spatially varying current is computed using the expres-
sion (2). Knowing the spatial (pointwise) distribution of current,
the Lorentz force (J.B) in the momentum equation is evaluated.
Similarly, work done by Lorentz forces and the Joulean dissipa-

tion (uJB + j2

σ
) needed in the energy equation is also evaluated

using Eq. (2). Having computed the MHD related source terms
in the momentum and energy equations, an inviscid compress-
ible flow solver is used to obtain converged solution of the ve-
locity field. Based on the velocity distribution computed using
the flow solver, the total power generation is calculated using
Eq. (4). The total power and design variable k, are then used as
inputs to an optimization routine. The optimization routine gen-
erates subsequent values of k, and computes the corresponding
values of power generated. The optimization routine converges
when the optimum power corresponding to a given set of pre-
scribed conditions (inlet Mach number, B-field, channel geom-
etry and electrical conductivity distribution) is reached. Fig. 2
shows the flow chart of the numerical procedure used in this
work.

It must be pointed out that the above-mentioned numerical
framework allows a more realistic model to evaluate the electric
current (including the effect of Hall current), which can then be
used to obtain the total power as P = ∫

V
J.E dV . This can be

accomplished by use of a Poisson solver to compute the point-
wise current and electric field distribution and hence the total

Fig. 2. Outline of the numerical Euler solver/optimizer strategy.
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power extracted in the MHD generator. The electric field may

be derived from a scalar potential, namely,
⇀

E= − ⇀∇ ϕ. Ohm’s
law may then be used to relate this potential to the current den-
sity as shown below.
⇀

J = σ(−⇀∇ϕ + ⇀

V × ⇀

B) − ωτ

B
(
⇀

J × ⇀

B) (5)

where σ denotes the electrical conductivity, ωτ/B is the Hall
parameter, J is the electric current density and B is the applied
magnetic field vector. Since the induced magnetic field is ne-
glected, the only electromagnetic field quantity that needs to
be computed numerically is the electric potential. When the di-
vergence of the above expression for current is set to zero and
is re-written in terms of the electric potential, a Poisson type
equation is obtained. Solution of this Poisson equation yields
the electric potential ϕ and electric current density J . The Joule
heating term and Lorentz forces in the energy and momentum
equations can thus be obtained knowing the current distribu-
tion. Effects of space charge can also be included in the above
formulation. Effects of viscosity and heat transfer could also
be included if one were to use a Navier–Stokes flow solver to
compute the flow field. The objective function (Eq. (4)) would
be modified to reflect these losses. The power loss due to fric-
tion and heat transfer would be subtracted from Eq. (4) to yield
a modified objective function, which would then be optimized.
Use of more complex flow and current models increase the
computational burden and hence should be used in the later
stages of design/optimization, if need be.

In this paper, however, we use the simple model proposed by
Neuringer (as described in Eqs. (1)–(4)) to demonstrate the use
of our numerical approach to study a MHD generator with spa-
tially varying electrical conductivity. The channel cross-section
and B-field are assumed to be constant. The magnetic field was
assumed to be 1 T. All the flow computations in this work were
performed using a 1-D Euler code for a channel length of 1
meter. A hundred grid points were used for the flow compu-
tations. Grid convergence studies showed that a hundred grid
points were adequate for resolving the flow gradients. A typical
flow/optimization solution took about 2–3 minutes on a single
CPU machine. The Euler solver was converged to 8 orders of
magnitude for each value of the design variable k. The ADS
code is used to perform the optimization. The ADS code solves
the non-linear constrained optimization problem

Minimize f ( �X) (6)

subject to the inequality constraints

Gj( �X) � 0, j = 1,Nj

and equality constraints

Hk( �X) = 0, k = 1,Nk

where the vector �X = (x1, x2, x3, . . . , xN) is the vector of de-
sign parameters. ADS employs the method of steepest descent
which leads to the iterative solution procedure for �X given by

�Xn+1 = �Xn + c.�Sn

where the superscript n is the iteration counter (optimization
cycle), �S is the vector search direction, and c is a scaling
parameter. The optimization routine converges when the rel-
ative and absolute change in the objective function are less
than a user-defined convergence criterion. If F(0) were to be
the value of the objective function corresponding to the ini-
tial design, the absolute change in the objective function is
defined as εF (0). In this work, ε was set equal to 0.001.
The relative change in the objective function is defined as
‖(f ( �Xn+1)−f ( �Xn))/(f ( �Xn))‖. The convergence criterion for
relative change in the objective function was set equal to 0.001.

4. Results and discussion

This section discusses the following:

(a) Validation of our numerical approach.
(b) Use of the coupled Euler-ADS numerical scheme to study

MHD power generation with spatially varying electrical
conductivity.

4.1. Validation of our numerical approach

In order to validate our numerical approach we compared
the non-dimensional voltage drop across the load (k′) and opti-
mum power extracted with analytical expressions proposed by
Neuringer for a MHD channel with constant area and constant
electrical conductivity. Analytical results were obtained by a
solution of Eq. (19) and Eq. (23) in Ref. [1] using an itera-
tive scheme. This validation was done for a range of supersonic
inlet Mach numbers and interaction parameters as shown in Ta-
ble 1. The interaction parameter is defined as the ratio between
the electrical body force to the inertial force and is expressed as

[δ = B2σ l
ρu

].
Fig. 3 shows a comparison between the axial variation of

Mach number for optimum power extraction for Mo = 4.5,
δ = 3.0 using analytical results from [1] and our coupled

Table 1
Comparison of numerical optimization results with the analytical results

M δ k′
(analytical)

k′
(numerical)

Optimum power in
MW (analytical)

Optimum power in
MW (numerical)

3.0 0.5 1.851 1.852 1.355 1.350
3.0 1.0 1.686 1.686 1.917 1.910
3.0 2.0 1.548 1.551 2.247 2.237
3.0 3.0 1.513 1.512 2.309 2.294
3.0 4.0 1.505 1.504 2.321 2.315
3.0 8.0 1.502 1.502 2.324 2.323

4.5 0.5 1.882 1.891 4.702 4.735
4.5 1.0 1.755 1.757 6.913 6.933
4.5 2.0 1.621 1.622 8.462 8.484
4.5 3.0 1.578 1.579 8.841 8.847
4.5 4.0 1.560 1.567 8.936 8.946
4.5 8.0 1.556 1.554 8.97 8.966

6.0 0.5 1.890 1.898 11.307 11.278
6.0 1.0 1.776 1.774 16.777 16.785
6.0 2.0 1.6468 1.651 20.793 20.822
6.0 3.0 1.6012 1.602 21.844 21.858
6.0 4.0 1.5844 1.590 22.129 22.130
6.0 8.0 1.5751 1.575 22.238 22.232
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Fig. 3. Comparison of Mach number for Mo = 4.5, δ = 3 using analytical and
numerical methods.

Euler/optimizer numerical approach. From Table 1 and Fig. 3
excellent agreement is seen between the results obtained from
our numerical approach and analytical predictions for a range of
Mach numbers and interaction parameters, thus validating our
numerical approach and its implementation. Fig. 3 shows that
the Mach number drops sharply near the inlet and reaches an as-
ymptotic value. This characteristic is opposite to subsonic flows
wherein the Mach number (and velocity) increases sharply near
the exit (as shown in Fig. 4 Ref. [1]). This behavior has im-
portant implications with regards to the uniformity of power
distribution along the channel, as discussed next.

4.2. Optimization of a constant area channel with varying
electrical conductivity

From Eq. (4) is it seen that for an MHD channel with con-
stant electrical conductivity, magnetic field and cross-section,
the power density varies axially as the velocity—hence the
power delivered to the external load takes place in the regions
with the largest velocity gradients. Thus, for maximum power
extraction at a given δ, a major portion of the power delivered to
the external load takes place near the channel extremities (inlet
for supersonic flows as shown in Fig. 3) and outlets (for sub-
sonic flows). This is a major drawback in MHD generators with
constant electrical conductivity. This situation can be reme-
died if the electrical conductivity of the working fluid (flowing
plasma) is also spatially varying. A more uniform power density
distribution could be obtained by using a lower value of electri-
cal conductivity in regions where the velocity gradient is steep
and vice versa. Hence for MHD generators with supersonic in-
lets, a lower value of electrical conductivity near the inlet could
compensate for the steep velocity gradient, thus leading to a
more uniform power-density distribution along the MHD chan-
nel. In this section we investigate the effect of spatially varying
electrical conductivity on the power density distribution along
the channel, as compared to a case with constant conductivity;
using our coupled Euler–optimizer numerical approach. The to-
(a)

(b)

Fig. 4. Axial variation of power density (a) and velocity (b) for Popt = 8.8 MW,
Mo = 4.5 with constant σ and axially varying σ .

tal optimum extracted power is kept the same in both cases.
Our numerical approach is general enough to study any arbi-
trary model for electrical conductivity and is not limited to the
hypothetical electrical conductivity distribution described next.

In aerospace applications, where it is proposed that elec-
trical conductivity be sustained by non-equilibrium ionization
techniques, it is possible, in theory, to obtain an axially vary-
ing electrical conductivity distribution. For MHD by-pass en-
gines it has been shown that e-beams [16] are perhaps the best
non-equilibrium ionizing method. The electron number density
and hence electrical conductivity generated by using e-beams
is proportional to the current of the e-beam and the density
along the channel [17]. E-beams can thus, in theory, create a
region of spatially varying electrical conductivity. Axial varia-
tion of electrical conductivity along the length of the channel
can be generated by varying the e-beam current. The e-beam
current can be kept constant for a prescribed length (x1) to ob-
tain a constant electrical conductivity and then increased axially
to obtain a spatial distribution of electrical conductivity of the
form shown below.
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σ = σ1 for 0 < x < x1 (7a)

σ = σ1 + τ(x − x1)
2 for x1 < x < l (7b)

The above form of electrical conductivity distribution is chosen
so as to maintain a lower value of electrical conductivity near
the inlet where there are steep velocity gradients and rapidly in-
crease it when the velocity gradients in the channel reach an
asymptotic value (see Fig. 4(b)). The values of σ1, τ and x1
can be varied based on system design parameters and engineer-
ing constraints. In this paper we choose values of σ1, τ and
x1 to match the optimum power extracted from a channel of
constant conductivity. As an illustrative example, we present a
case where the inlet Mach number (Mo) is 4.5 and the optimum
power extracted is 8.8 MW. For the case with constant electrical
conductivity, the interaction parameter was 3, corresponding to
a constant electrical conductivity of 522 mho/m (it is not possi-
ble to define a global interaction parameter when the electrical
conductivity is varying across the channel). For the case with
varying electrical conductivity the following values were used
to generate a spatially varying electrical conductivity distribu-
tion discussed above; σ1 = 250, x1 = 0.15, and τ = 1200. The
value of x1 was chosen based on the approximate length over
which the velocity drops sharply. As seen in Fig. 4(b), there is
a steep velocity gradient for x ∼= less than 0.15, hence x1 was
set equal to 0.15. The values of σ1 and τ were based on keep-
ing the overall conductance (in mho) of the channel

∫ i

0 σ dx, the
same for both the cases (so as to keep the total extracted power
the same).

Fig. 4(a) and (b) show the comparison of axial power density
(W/m3) and velocity for constant and axially varying σ , respec-
tively. It is seen that when the electrical conductivity along the
channel is constant, the power density is highly non-uniform,
with most of the power extraction taking place within half the
channel length near the inlet. The power density near the inlet
is almost two orders of magnitude higher than that near the exit
plane. Using an axially varying electrical conductivity, it is pos-
sible to achieve a fairly constant velocity gradient (Fig. 4(b)),
leading to a greater uniformity in the power density distribution
along the channel. The variation in power density can almost
be reduced by one order of magnitude using variable electrical
conductivity in the channel. Using the numerical approach out-
lined in this work, different conductivity models and/or channel
geometries can be investigated. Since the computational effort
is small, the designer can investigate several scenarios before
attempting to incorporate other effects such as friction, heat
transfer, Hall effects and space-charge.

5. Conclusions

In this paper, optimum power extraction in an MHD gener-
ator with supersonic inlet Mach numbers was examined when
the electrical conductivity of the working fluid is spatially vary-
ing. A numerical approach was developed wherein a flow solver
was coupled to an optimization routine to compute the optimum
power extraction and the variation of fluid-dynamical variables
corresponding to this optimum value. The numerical approach
is general enough to include any arbitrary conductivity model,

and also the effects such as heat transfer, friction, space-charge
and Hall currents. The numerical approach was applied to a
simplified ideal Faraday generator discussed by Neuringer. It
was shown that MHD generators with axially varying electri-
cal conductivities (varying interaction parameters) can have a
more uniform power density distribution along the length of the
channel, as compared to MHD generators with constant electri-
cal conductivities.
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